Medical

3DHEALS Ohio

3DHEALS Ohio: Hidden Gems (Premium)

Ohio is perhaps one of the most overlooked healthcare innovation hubs. In this webinar focusing on 3DHEALS Ohio community, we are featuring experts from academia and local businesses who are working on cool things that (you may not realize) are happening in Ohio.

Speaker info:

Andrew Hudson

Andrew received his B.Sc. in Materials Science and Engineering (2014) and M.Sc. in Biomedical Engineering (2015) from Carnegie Mellon University. He is currently a Ph.D. student in Adam Feinberg’s Regenerative Biomaterials and Therapeutics Group. The goal of Andrew’s research is to vastly improve the resolution and vascularization in 3D bioprinting to create the next generation of tissue engineered therapies such as cardiac muscle. Andrew is also a Co-Founder of FluidForm, a CMU startup that seeks to spread the FRESH 3D bioprinting technology developed in the Feinberg lab. 

Interview with Andrew Hudson, Co-Founder of Fluidform

The Yellow Brick Road of 3D Bioprinting (Part 1)

The Yellow Brick Road of 3D Bioprinting (Part 2): Soft Is Hard

The Yellow Brick Road of 3D Bioprinting (Part 3): Maturation

3D Bioprinting: The Yellow Brick Road (Part 4)

Keith Grafmeyer

Keith Grafmeyer graduated from the University of Rochester with a BS in Biomedical Engineering and is currently the Director of Product Development at VisionAir Solutions, a spinout of the Cleveland Clinic.  He has been working in medical device startups in the Cleveland-area for about 6 years while holding management roles in regulatory affairs and product development.  So far in his career, Keith has brought two patient-specific medical device systems to market in orthopedics and interventional pulmonology with 7 FDA 510(k) clearances.  The orthopedic system was acquired in 2018 by Arthrex.  It has now treated tens of thousands of patients as their Arthrex VIP shoulder arthroplasty product.  

In his current role, Keith oversaw the development and product launch of a system to treat airway obstruction with proprietary software and patient-specific silicone airway stents.  The company is working on a new version of this software as well as implants to treat other complex problems in interventional pulmonology.

Overall, Keith has had the unique experience of managing the development, regulatory clearance, and market launch of products that contain proprietary software and patient-specific treatment deliverables manufactured using 3D-printing technology.

Dave Pierson

Senior Design engineer at Manufacturing Advocacy & Growth Network (MAGNET)

Dave Pierson

Dave Pierson is a Senior Design Engineer for MAGNET and a notable figure in the advanced manufacturing community. He has 23 years of varied and practical additive manufacturing training experience as well as 40 years of experience in mechanical and electric engineering and programming. Pierson regularly develops and delivers training curriculum and trains operators, students, and engineers on past and present additive techniques. His experience covers seven AM standards categories as set by the American Society for Testing and Materials.

David Dean

Departments of Plastic and Reconstructive Surgery and Materials Science and Engineering at The Ohio State University

David Dean

David Dean’s research focuses on medical procedures and devices primarily related to musculoskeletal reconstructive surgery. His PhD thesis presented a novel, template-based method for the production of average 3D surface images of organs such as the skull. His postdoctoral research at the Institute of Reconstructive and Plastic Surgery (New York University, New York, NY) used average skull images as targets for surgical simulation and intra-operative guidance. In July 1994, Dr. Dean joined Case Western Reserve University (Cleveland, OH) where he began using average skull images to design and fabricate cranial implants in the Department of Neurological Surgery. Indeed, Dr. Dean was the first person to use an anatomical template to design and 3D print a patient-specific cranial implant, a procedure that is now standard-of-care. Since the mid-1990’s Dr. Dean’s research has expanded to incorporate techniques from the field of regenerative medicine, including biomaterials, skeletal progenitor cells, and cell-signaling proteins and molecules in the search for a bone tissue engineering (i.e., bone substitute) strategy. In 2013 Dr. Dean’s primary appointment moved to the Department of Plastic and Reconstructive Surgery at The Ohio State University (Columbus, OH) and, currently, the Materials Science and Engineering Department. At Ohio State University he leads the Osteo Engineering Lab (www.OsteoEngineering.com) where novel bone tissue engineering research uses 3D printed, resorbable, solid-cured polymers as well as bioprinted, cell-laden, hydrogels. He is also working on the 3D printing of two biometals, NiTi and a resorbable, patent-pending Mg alloy. Both are being used to develop stiffness-matched, skeletal fixation devices. Taken together, these technologies portend significant improvements in musculoskeletal reconstructive surgical outcomes.

Moderator: 

Dr. Justin Baker

Dr. Justin Baker

Dr. Justin Baker graduated magna cum laude and with university honors in mechanical engineering from Brigham Young University (BYU). Dr. Baker subsequently earned his Ph.D. in Bioengineering from the University of Utah. A postdoctoral fellowship at the Cleveland Clinic brought him and his family to Cleveland in 2010. Since then Dr. Baker has worked for a number of local start-up and mid-size medical device companies, and his family has grown to include six children. In 2014, Dr. Baker was certified in Regulatory Affairs (RAC). He currently serves as the Vice President for Research and Development for Viscus Biologics, collagen, and natural polymers-based biomaterials and medical device company. Dr. Baker has been the Cleveland Community Manager for 3DHEALS since 2018.

3DHeals Melbourne – 3D MedTech Innovation (Premium)

3DHeals Melbourne is returning in 2021 to highlight local collaborative innovations in health care 3D technologies and to provide a virtual platform to foster crosstalk between clinicians, academia, and industry. The focus for this event will be on the real-world applications of biomedical engineering as we will hear from leading experts in the fields of 3D printing, 3D modeling/digital design, medical devices, and implants, followed by a discussion panel to breakdown similar challenges that lie ahead and how best to synergize research and development efforts moving forward. 

3DHeals Melbourne welcomes all who are interested to learn more of the latest developments, practical applications, and future explorations of these exciting 3D medical technologies and how they can help shape the future of patient care.

Speaker info:

William Harley

William Harley

William Harley graduated with honors in medical biotechnology from the University of New South Wales. Currently, he is undertaking a Ph.D. at the University of Melbourne in acoustophoretic bioprinting. Stemming from his research experience in biomaterials, stem cells, and nanofabrication, he is driven by the clinical translation of personalized regenerative medicine. He is passionate about the innovation of 3D printing in healthcare and is determined to orchestrate a series of 3D HEALS events to engage in the Australian community.

Mark Roe

Managing Director of Fusetec

Mark Roe

Mark Roe, along with his business partner John Budgen founded Fusetec in April 2017, the business had a somewhat unconventional beginning. “When I was introduced to advanced manufacturing, the theory behind Industry 4.0 was compelling. I could really see a future in it,” said Roe. Once back in Australia, Mark considered the three major manufacturing industries in South Australia: aerospace, defense, and medical. He quickly landed on medical. “By opting to work in the medical industry, we could develop our own IP, with global applications.” It was then that he started canvassing medical professionals and academia to pinpoint that all-elusive problem to solve. The three most commonly cited issues were a lack of cutting guides, medical implants, and patient-specific models. However, he was not keen to pursue a business model based on personalized manufacturing. Mark leads the management team and passionately drives our Research & Development team, collaborating with Universities, Medical professionals, and Government entities worldwide.

Prof. Peter Lee

Professor in the Department of Mechanical Engineering at University of Melbourne/Director of ARC CMIT

Prof. Peter Lee obtained his BEng in Mechanical Engineering (1st Class Hons. 1991) and PhD (1996) in Bioengineering from the University of Strathclyde, UK, and continued his post-doc in the same university from 1996–1998.

Professor Peter Lee is the Director of the Australian Research Council (ARC) Training Centre for Medical Implant Technologies and the Chief Investigator in the ARC Training Centre for Personalised Therapeutic Technologies. As Director of the ARC Training Centre for Medical Implant Technologies, he leads the largest industry-university-hospital partnership in Australia focusing on orthopaedic and maxillofacial implants to train a new generation of interdisciplinary engineers in biomechanics, materials and manufacturing for the orthopaedic and maxillofacial implant industry. He joined the University of Melbourne, Australia, as a Senior Lecturer in 2008, and was promoted to an Associate Professor in 2011 and a Professor in 2015. Since then he has held several leadership positions including Deputy Head and Acting Head of Department of Mechanical Engineering, and currently as the Deputy Head (Research) of Department of Biomedical Engineering and leads the Cell and Tissue Biomechanics Laboratory in Engineering, where his research aims to better understand the behaviour of biological cells and tissues under mechanical forces. He has authored more than 140 publications in journals, conference proceedings and books. He is a regular reviewer for journals and grant bodies and currently the Deputy Editor for Journal of Orthopaedic Surgery and Research (Springer Nature), and Associate Editor for Frontiers in Pharmacology (Translational Pharmacology).

A/Prof. Kate Fox

Associate Dean of Higher Degrees by Research/ and Associate Professor within the School of Electrical and Biomedical Engineering at RMIT

Kate Fox is an Associate Professor in the School of Electrical and Biomedical Engineering. Kate is a biomedical engineer with significant experience and expertise in coatings and implant fabrication for orthopedic applications. Prior to joining RMIT, she was part of the Bionic Eye Project working to develop a high acuity diamond electrode capable of electrically stimulating retinal tissue. She is a reformed patent attorney and can advise on the patentability of research. Kate is committed to the real-world application of biomedical engineering and was shortlisted for the AFR 2018 Emerging Leader in Higher Education Award. Kate is experienced in working in highly complex, transdisciplinary projects, coordinating research teams, and providing the surgical integration necessary to transition an engineered product into a surgically feasible product. She has successfully attained over A$6M direct and in-kind funding. Kate is CI in the ARC ITTC in Additive Biomanufacturing and a 2019-2020 Superstar of STEM.

Dr. Lindsay Bussau BSc (Hons), PhD

Applications and Customer Support Manager, Optiscan Pty Ltd

The talk will discuss endomicroscopy and the basics of Optiscan’s handheld fibre-optic confocal microscope. Dr. Bussau will demonstrate the Optiscan FIVE2 (Viewnvivo) handheld confocal imaging system and will discuss the potential for use of confocal endomicroscopy to image tissue structure in vivo. Dr Bussau did his post-doctorate research on confocal laser fiber optic imaging and has 25 years of experience with the technology.


Dr. Yunlong Tang

Joint lecturer in the Department of Mechanical and Aerospace Engineering and the Department of Materials Science and Engineering Monash University

Dr. Yunlong Tang joined the Faculty of Engineering at Monash University in Feb 2020. Currently, he is a lecturer jointly appointed by the Department of Mechanical and Aerospace Engineering and the Department of Materials Science and Engineering.  His major research interests are in the general field of design and manufacturing, including smart manufacturing, additive manufacturing, and its related design methods, sustainable design and manufacturing, AI-aided design, CAD/CAM, design and fabrication of lattice or cellular materials. Yunlong has over nine years of international R&D experience, participating in several national research and industrial projects from China, Canada, Europe, and Singapore. He obtained his Ph.D. degree from McGill University, Canada in 2017, M.Sc. degree from Beijing University of Aeronautics and Astronautics, China in 2013, B.Sc. degree from Harbin Institute of Technology in 2010. Before he coming to Monash, he did one and half year Post-Doc research at Singapore University of Technology and Design and was working on the next generation of CAD software for AM. He is a leading developer of an open-source lattice structure design and optimization software called INTRALATTICE PRO which has been downloaded more than ten thousand times by now.

Tam C. Nguyen

Associate Professor and Deputy Director of Research at St Vincent’s Hospital Melbourne

Associate Professor Tam Nguyen has over 20 years of working in the healthcare, health & medical research environment including tertiary teaching hospitals and research institute across Australia.

Tam is the Deputy Director of Research at St Vincent’s Hospital Melbourne, one of the largest tertiary teaching and research hospitals in Melbourne – responsible for the organisation’s research strategy, research ethics and governance, clinical trials, research innovation and development.

Tam serves as non-executive director and advises several medtech and health tech start-ups on clinical and commercialisation strategy. He is a regular invited speaker on a broad range of topics at national and international conferences. He holds academic appointment with Melbourne University’s Medical School and Monash University’s Medical School – two of the world top 30 (and APAC top 5) medical schools.

.

Cybersecurity for 3D Printed Medical Devices (Premium)

The cyberattack has made multiple headlines this year, but how many people really understand the technologies and challenges behind the promises? 3DHEALS invites a panel of legal and technological experts from world-class institutions (Identify3D, NYU, MedCrypt, Duane Morris ) to present their unique perspectives and join an exciting conversation focusing on how to forge your own strategy when it comes to cybersecurity for 3D printed medical devices.

Speaker info:

Stephan Thomas

Co-founder and Chief Strategy Officer of Identify3d

Stephan Thomas is currently the Co-founder and Chief Strategy Officer of Identify3d, a software company that develops software solutions for Digital Manufacturing, in charge of Strategy and Business Development. Identify3d enables the Digital Thread through design protection, manufacturing repeatability, and traceability. Stephan has more than 25 years of experience in Operations, Supply Chain, M&A and Restructuring with companies such as EY, Alvarez & Marsal and REL Consultancy. He holds an M.B.A. from Baruch College’s Zicklin School of Business and a Master in management from Dauphine University (France). Stephan also lectures at the Berkeley-Columbia Executive M.B.A. on performance improvement topics. He is a board member of 3D4pro, an Additive Manufacturing Saas company.

Nikhil Gupta

NYU-Tandon School of Engineering Professor in the Department of Mechanical and Aerospace Engineering

Nikhil Gupta

Nikhil Gupta joined the NYU-Tandon School of Engineering faculty in 2004 and currently serves as a Professor in the Department of Mechanical and Aerospace Engineering. He is also affiliated with the Department of Civil and Urban Engineering and the Center for Cybersecurity.

His research focuses on advanced materials, with current projects related to developing new security methods for 3D printing, developing filaments of advanced composites, and using machine learning methods for materials characterization.

He served as the Chair of the Composites Materials Committee of TMS (2016-2018) and Membership Secretary of the American Society for Composites. He is serving on the editorial board of Composites Part B: Engineering, Materials Science and Engineering A, Heliyon, Advanced Composites, and Hybrid Materials, and ASTM journal Materials Processing and Characterization.

Sean Burke

Partner and Vice-Chair of the products liability trial division at Duane Morris

Sean Burke profile

Sean Burke is the partner and vice-chair of the products liability trial division at Duane Morris. He is in the firm’s Washington, DC office.  Mr. Burke’s practice focuses on the representation of manufacturers of medical devices in product liability cases across the country, including in consolidated multi-plaintiff matters in both federal court and state courts. His experience includes the defense of large total joint replacements (hips, knees, ankles, and shoulders) and resurfacings, tissue matrices and patches, fusion plates, and surgical instruments. 

He has a particular interest and focuses on additive manufacturing, consulting, and advising clients on best practices in the early stages of development to reduce the risk of product liability exposure.  He has tried medical device cases before juries in both state and federal courts while also handling numerous mediations.  He works closely with scientific experts to advance causation and liability defenses in the areas of biomechanical engineering, toxicology, histology, epidemiology, orthopedic surgery and FDA regulations. Click here to read more about Duane Morris’ medical device litigation practice.

Vidya Murphy

VP of Operations – MedCrypt

Vidya Murphy


Vidya is a hands-on leader who is passionate about her people and community. Prior to joining MedCrypt as VP of Operations, she worked for global medical device manufacturer Becton Dickinson.  Vidya holds an MBA from the Wharton School. 

3DHEALS2020

3DHEALS2020 Summit Recordings (Premium)

3DHEALS2020

3DHEALS2020 (June 5th-6th, 2020 )was the largest virtual summit this year, in the space of healthcare 3D printing/bioprinting, or elsewhere. This incredible virtual two-day summit gathered more than 70 world experts, 22sessions. It is one of the most well-curated events that engage the audience to learn, think, and re-invent future healthcare.

We believe the recordings of this summit not long serve as a record of technological advanced in time and space, but also a good starting point for anyone who is interested in working and investing in this unique space.

Download Agenda here:

3D Printing Ti6Al4V Orthopaedic Implants: As Easy as Counting 1-2-3 (Video)

Media Coverage:

3DHEALS2020: Thank You!

Adventure for Life: Why You Really Should “Attend” 3DHEALS2020 Live

3DHEALS 2020 Virtual Medical Summit: 3D-Printed Materials in Healthcare (3DPrint.com)

Reimagining Healthcare With 3D Printing (SME)

3DHEALS 2020 Virtual Medical Summit: Comprehensive Look at Craniomaxillofacial 3D Printing (3DPrint.com)

3DHEALS2018 Summit Recordings (Premium)

Download 3DHEALS2018 agenda:

The 3DHEALS2018 conference has gathered 45 cross-disciplinary influencers from all over the world to speak on the current and future trends of this burgeoning field, which aims to transform trillion-dollar industries including the manufacturing, medical device, and pharmaceutical industries. The group shares the belief that these technologies will be able to solve many healthcare challenges that existing technologies cannot, including; lowering care costs, increase access to care, and improving care outcomes. 
This two-day activity-filled event includes a Day 1 hands-on workshop to continue the company’s efforts in building and expanding end-user base among medical and dental healthcare providers, but also provide organizations with how-tos to become early adopter and users of 3D printing and bioprinting technologies. Notably, workshops include:

  • Valerie Cooper, also known as the “Denture Queen”, will lead a 1.5 hours hands-on session to teach attendees on how to create dentures with a new digital workflow that can potentially solve the current crisis where there is a lack of affordable denture providers and care.
  • Mayasari Lim from SE3D will also provide a hands-on workshop to teach attendees the basics of bioprinting, a technology that has the potential to solve current organ transplant shortage crisis.
  • Hannah Riedle from FAU Erlange-Nuremberg (Munich, Germany) will provide a 1.5 hour long hands-on workshop to share her digital workflow of generating 3D printed medical anatomical models using open source software. 
  • Erik Birkenederfrom Nixon Peabody LLP will provide an overview on how to protect intellectual properties for the entrepreneurs in this new space.

The attendees are invited to the night reception immediately following the workshops to raise money for two non-profit organizations, Limbforge and the Victoria Hand Project. The special press release for the fundraising event is here.
Day 2 is the main conference day where 40+ industry leaders and innovators will speak. The event’s keynote speaker Mr. Jeffrey Sorenson from Terarecon will start the day with his insights on how an integrated digital system composed of 3D visualization, 3D printing, and artificial intelligence will impact the future of healthcare. Two parallel tracks of expert panel presentations and QA sessions will then ensue.
Among the many topics that will be explored in-depth during the conference, notable ones include:

  • 3D printing in healthcare organizations– Include presentations from multiple institutions with variable resources, including Stanford Healthcare, Children’s Hospital of Phoenix, and Children’s Hospital Boston.
  • Legal and regulatory updates– FDA and CE updates on 3D printed medical devices, IP and liability concerns in healthcare 3D printing and bio-printing innovations. Presenting companies include UL, JNJ, ReedSmith, Nixon Peabody, and Squire Patton Boggs.
  • Digital dentistry– Include current and future trends of implementing 3D printing in dentistry and becoming part of a growing dental in-office digital manufacturing ecosystem.
  • Advanced materials updates– Include current and future material selection of biocompatible polymers and metals for 3D printed medical devices. This powerful panel includes Nag Patibandla from Applied MaterialsRik Jacobs from NextDent (now 3D Systems), Karsten Schlichter from Elkem Silicones, and Ankit Saharan from EOS.
  • Bioprinting panel– includes perspectives of how, and how soon bioprinting will impact the future of organ transplant and pharmaceutical research form a panel of bioprinting startups including Aspect BiosystemsPrellis Biologics, and pharmaceutical startup Viscient Biosciences (partner with Organovo), as well as Medtronics.
  • Orthotics and Prosthetics panel– includes updates from founders of Standard Cyborg, WiDE, the Victoria Hand Project.
  • Orthopedics panel– Includes presentations by UCSF orthopedics and AnatomicsRx, a company that successfully created the first customized sternum implant in the United States.
  • International panel – Includes individual to organizational insights on healthcare 3D printing and bioprinting innovations all over the world.

During lunchtime, the annual global pitch competition will invite 10 startups from healthcare 3D printing, bioprinting, and related 3D visualization technologies such as VR/AR to pitch in front a group of investors including GE Ventures, Asimov Ventures, Digital Industrialist, and other Silicon Valley investors.
The event will conclude with a fireside chat between Dr. Paul D’Urso, CEO of AnatomicsRx, a company that successfully created the first customized sternum implant in the United States, and Penelope Heller, the patient who successfully received the treatment. The presentation aims to provide the audience a real-life example of not only how 3D printing innovation in health care improves patient care, but also the many challenges faced by both the patients and companies to access and implement these innovations.

Media Coverage:

3DHeals 2018 to foster collaboration in medical 3D printing

Nia’s CEO Interviewed For 3DHEALS 2018 Conference

3DHEALS 2017 Summit Recordings (Premium)

The 2017 edition of 3DHEALS Global Summit was a huge success. With a co-host like UCSF, the event gathered 300+ international attendees, 45 speakers, 7 startups for the pitch competition. It also concluded with a successful fundraising event for Voices of Africa at the beautiful Autodesk gallery. The community has shown significant solidarity in collaborative work and commitment to education. Read various media write-ups about the event in the links below

3DHEALS2017 PHOTOS

Media Coverage on 3DHEALS2017

Medtech 3D printing: From a San Francisco happening to a legal limbo

3D Printing’s Legal Landscape Remains Wild, Untamed

3DHeals conference explores 3D printing and more

3DHeals: 3D printing start-ups demand skill, persistence

orthopedics sf

San Francisco: 3D Printing and AI in Orthopedics (In-Person, Hybrid) (Premium)

Join us for an exciting in-person event at 555 California Street, San Francisco, CA, USA! Discover the latest advancements in 3D technologies for orthopedics. Learn from industry experts, engage in lively discussions, and network with like-minded professionals. This event is a must-attend for anyone interested in the intersection of 3D printing and orthopedics. Don’t miss out on this opportunity to stay at the forefront of innovation in healthcare. The in-person capacity is only 30 people. Registration closes Feb 9th, 2024 for security reasons!

Speakers:

Craig Rosenblum

Craig Rosenblum is the President of Himed. Over 30 years of operation, Himed has become a global leader in calcium phosphate based biomaterial production and has developed proprietary plasma spray coatings and surface treatments. Craig and his team collaborate directly with dental and medical device manufacturers around the world to provide innovative biomaterial solutions. Craig discovered a unique application for MATRIX MCD® post-processing additively manufactured titanium implantable devices using Himed’s proprietary and biocompatible resorbable blast media. Himed has since formed a strategic partnership with Lithoz, a global market leader in 3D printing, to develop new bioceramic bioinks for medical 3D printing. Craig received his B.S. and M.S. degree in Materials Science & Engineering with a Biomaterials concentration from The Johns Hopkins University (Baltimore, MD). With a focus in biomaterials characterization, his groundbreaking research explored the variations in the microstructure and mechanical properties of dental enamel. These studies were the first to demonstrate the unique heterogeneous nature of enamel. Craig currently serves on The Johns Hopkins University Materials Science & Engineering Advisory Board.

Kerim Genc

Kerim serves as a Product Manager for the Simpleware Group at Synopsys, bringing over a decade of expertise to the role. Joining Simpleware in 2011 to oversee regional sales, he seamlessly navigated through progressively influential positions, including global sales and business development, culminating in his current role as a Product Manager. A highly qualified professional, Kerim earned his BS and MS in biomechanics from the University of Calgary and the Pennsylvania State University, respectively. He further solidified his academic credentials with a Ph.D. in Biomedical Engineering from Case Western Reserve University, where he utilized computational methods to investigate innovative countermeasures addressing spaceflight-induced bone loss and fracture risk.

Alyssa Huffman

Alyssa Huffman is the inventor, founder, and CEO of Allumin8. A company dedicated to bringing research-backed innovation to 3D printed orthopedic and spine hardware in an effort to increase implant survivorship and reduce the likelihood of catastrophic revisions. Allumin8’s implants (including the A8 Integr8 Porous Pedicle Screw System – not cleared for sale in the US) are designed to match the trabecular pattern of bone with the intent to study a variety of biologic therapeutics delivered through or drawn into the hardware. No change in surgical technique. No change in care. No change in pricing. Simply providing options that never before existed in hardware for the betterment of the patient. Licensing opportunities are available by contacting alyssa@allumin8.com.

Dean Hughes

dean hughes

Dean Hughes is the Regional Technical Director at Smith and Nephew Orthopedics. He earned his Bachelor’s and Master’s in Mechanical Engineering from the University of Memphis and an MBA from Christian Brothers University. Dean is a registered professional engineer in the State of Tennessee. Dean has designed, developed, and launched over 50 orthopedic implants and instruments projects with Smith and Nephew over the last 22 years. He also holds 15 US patents and several patents that are pending. Dean resides in Memphis with his wife Linda and enjoys restoring classic cars in his ‘spare’ time.

Organizer:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.