Bioprinting

3D Printing At the Point of Care

Led by clinical and technical experts from major institutions in the US, EU, and Singapore, this event aims to update all stakeholders on everything about point-of-care 3D printing. From personalized surgical tools to anatomical models for preoperative planning, participants will discover how this technology is revolutionizing patient care by bringing manufacturing capabilities directly to the bedside. Speakers and the audience will join a conversation on the current status and future direction of this new way of care delivery.

Speakers:

Shannon Walters

Shannon Walters is an innovation enabler and workflow optimization enthusiast. At Stanford 3D and Quantitative Imaging Lab, Shannon works closely with healthcare providers, researchers, and educators to enable effective health visualization. Recent innovations are of particular interest to Shannon such as AI in Medical Imaging, Virtual/Augmented Reality, 3D Printing, and longitudinal assessment of complex disease processes.

Chris LeCastillo

Chris LeCastillo is the Innovations Manager of the Stanford 3D and Quantitative Imaging Laboratory, where he is a Radiologic Technologist and a Certified Imaging Informatics Professional. He helps drive forward meaningful innovations in 3D printing, medical imaging AI, and manages the XR Neurosurgical Navigation program at Stanford. Chris holds a Bachelor of Science in Health Information Management and a Master of Health Leadership.

Mark Tan

Dr. Mark Tan is a Radiologist and the Clinical Lead of the Singapore General Hospital 3D Printing Centre. Dr Tan enjoys working with clinical teams on virtual surgical planning for head and neck, plastic and reconstructive, neurosurgical, oncological, orthopaedic and cardiac surgeries. Dr Tan also enjoys working with clinical teams, imagers, engineers, administrators, academia and industry in designing and producing from medical imaging patient-specific anatomical models for surgical rehearsal and implant sizing, surgical guides for localisation and reconstruction, bespoke orthotics and prosthetics, as well as custom implants, to improve clinical care.

Neha Sharma

Dr. Neha Sharma, PhD, is the Deputy Head of the Medical Additive Manufacturing (Swiss MAM) Research Group and the 3D Print Lab at University Hospital Basel, Switzerland. With a background in Craniomaxillofacial (CMF) Surgery from India and a PhD in Biomedical Engineering from the University of Basel, Switzerland, Dr. Sharma brings extensive expertise in CMF trauma, reconstructive, and orthognathic surgeries. Her work focuses on integrating digital technologies like medical 3D printing and VR/AR into clinical practice, pioneering computer-assisted virtual surgical planning, and exploring novel biomaterials for reconstructive surgeries.

Brian Overshiner

Brian Overshiner is a distinguished radiation therapist and 3D printing expert with over 20 years of experience in the medical field. His journey into the realm of 3D printing was driven by his passion for technology and innovation. In 2015, Brian spearheaded the creation of the IU Health 3D Innovations Lab, enabling Indiana University Health to become one of the first clinical sites to offer personalized 3D printed radiotherapy treatment devices along with design, prototyping and advanced visualization.
Currently, Brian serves as the onsite manager of the Ricoh 3D for Healthcare Innovation Studio in Winston-Salem, NC. This flagship HIPAA compliant, ISO 14485-certified Point of Care 3D medical device manufacturing facility provides immediate access to development, design, and manufacturing services for patient-specific 3D printed anatomical models used in surgical planning and patient education.

3D Bioprinting Biofabrication for Musculoskeletal Tissues

This virtual event centered on biofabrication and bioprinting of musculoskeletal tissue. As the demand for effective treatments for bone and cartilage defects continues to rise with an aging population, this event is a vital platform for deep conversations about the challenges, progress, and future of tissue engineering for regenerative purposes in treating orthopedic diseases. By attending, participants will gain invaluable insights into the cutting-edge technologies and methodologies driving the development of innovative treatments for musculoskeletal diseases. Throughout the event, attendees will have the chance to engage with leading experts in the field, who will share their expertise and firsthand experiences in both the scientific and commercialization aspects of the field.  Moreover, the virtual format ensures accessibility to a global audience, fostering collaboration and knowledge exchange among professionals from diverse backgrounds and regions. Don’t miss your chance to be part of this transformative event shaping the future of musculoskeletal tissue engineering and regenerative medicine.

Speakers:

Y. Shrike Zhang

Dr. Zhang is an Associate Professor in the Department of Medicine at Harvard Medical School and Associate Bioengineer in the Division of Engineering in Medicine at the Brigham and Women’s Hospital. He is directing the Laboratory of Engineered Living Systems (www.shrikezhang.com), where the research is focused on innovating medical engineering technologies, including 3D bioprinting, organs-on-chips, microfluidics, and bioanalysis, to recreate functional tissues and their biomimetic models, for applications in regenerative medicine and personalized medicine. Dr. Zhang is an author of >330 peer-reviewed publications (>50 covers; citations ~35,000, h-index = 92). His scientific contributions have been recognized by >45 awards.

Brad Estes

Dr. Estes received his Ph.D. from Duke University in Biomedical Engineering with an emphasis in chondrogenesis of fat-derived stem cells. Before earning his Ph.D., Brad served as the Manager of Research and Development in the spinal orthopedic division of Medtronic where he oversaw commercialization of medical devices from conception to market, including the achievement of regulatory approval for class III medical devices. He was also integrally involved in seeking intellectual property protection for the innovative products Medtronic was producing. In addition, Dr. Estes has acted as a consultant for both small and large medical device companies. In total, he has over 25 years of industry experience and holds 55 patents associated with medical devices. In his current role, Brad oversees all aspects of CytexOrtho operations with a focus on growth and success. In this position, he provides strategic leadership and sets the vision and direction for the company. His responsibilities include guiding research and development efforts, forging strategic partnerships, securing funding, and ensuring regulatory compliance. Additionally, he plays a hands-on role in fostering a collaborative and dynamic work culture, driving motivation and creativity among the tight-knit team at CytexOrtho.

Flore-Anne Poujade

Dr. Poujade earned her PhD from the University of Hull, UK. During her academic career, she worked on several projects. Including deciphering the roles of growth factors and hypoxia in regulating chondrocytic phenotype in vitro, as well as creating an aorta on a chip model to better understand the mechanisms driving ascending aortic aneurysm. It was after her postdoc at the Karolinska Institute that she joined CELLINK where she now works as Senior Field Application Scientist. As such, over the past 3 years, she has advised numerous researchers on 3D bioprinting techniques and practices to help democratise the fabrication of more realistic research models.

Dr. Wilson Wong

Wilson is a healthcare-focused entrepreneur with a PhD, MPhil, and BEng from the University of Hong Kong, specializing in biomechanics, biomaterials, and bone-related diseases. He also completed technopreneurship training at IECT, University of Cambridge, supported by Dr. Hermann Hauser. In 2014, he founded NOVUS Life Sciences Limited, where he currently serves as Chairman and CEO. NOVUS, a global leader in 3D printing biomaterials, operates cutting-edge manufacturing facilities in Hong Kong and Shenzhen. The company supplies to 35+ countries and 65+ corporate clients, supporting the production of patient-specific implants and devices. Wilson is actively engaged in the startup ecosystem and dedicated to fostering entrepreneurship education. He has been a featured speaker and lecturer at institutions and Bloomberg. Under his leadership, NOVUS has received numerous prestigious awards, including Champion of IMAGINE IF!, CNBC’s hottest startups, and accolades from GIN Austria, French Tech Ticket, and Alibaba Jumpstarter.

Moderator:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

3D Microfabrication 2.0

What is the next frontier of medical device and biotech innovation?  Don’t miss this upcoming virtual event, “3D Microfabrication 2.0.” Joined by leading experts and pioneers in the field, this event promises to unveil the transformative potential of 3D microfabrication techniques in revolutionizing the landscape of medical device manufacturing. From intricate implants to specialized instruments, participants will gain exclusive insights into how micro or nano-scale 3D printing is reshaping the design, production, and functionality of medical devices with unprecedented precision and efficiency at a micro-scale using a variety of biomaterials. Could bio-chips (microfluidics devices), robotic and endoscopic tips, and microneedles be the next frontier of international technological competition like that for the semiconductor industry? Join the conversation live and find out!

Speakers:

Dr. Benjamin Richter

Benjamin Richter is an Application Manager at Nanoscribe and develops microfabrication processes and applications for the life sciences. Before, he completed an interdisciplinary PhD thesis on “Selective Biofunctionalization of 3D Microstructures” in the groups of Prof. Wegener, Prof. Bastmeyer and Prof. Barner-Kowollik at KIT. His scientific papers have been cited more than 1500 times (Google Scholar).

Chunguang Xia

CTO and co-founder of Boston Micro Fabrication (BMF). Chunguan was trained as a mechanical engineer and worked in the semiconductor equipment industry for eight years before starting BMF Precision. Recently, BMF Biotechnology Inc. developed biochips for in vitro drug testing.

Jungho Choi

Jungho is a Ph.D candidate at Gatech with a background in mechanical engineering. His research is specialized in micro/nanoscale manufacturing. I aim to develop a new metal/polymer additive manufacturing system and generate the processing science for a rapid and cost-effective nanoscale fabrication system.

Talk title, “Scalable printing of metal nanostructures through superluminescent light projection”

Moderator:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

In Silico Simulation for Medtech and Biopharma

In-silico simulation refers to using computer modeling and simulations to predict the behavior of biological systems or processes. It is an increasingly important concept for future medical device and drug development. The benefits of in-silico simulation include lowering costs, reducing animal testing, improving accuracy and safety, and clarifying regulatory pathways. This virtual event aims to illuminate the revolutionary potential of in silico simulation in not only 3D printed devices but also medical technology in general and biopharmaceuticals, led by field experts and thought leaders. From drug discovery to medical device design, participants will gain exclusive insights into how computational modeling and simulation reshape the landscape of healthcare innovation. Witness how virtual prototyping and predictive modeling accelerate novel therapies’ development and optimize treatment strategies. This is an event you must not miss.

Speakers:

Simon Sonntag

Dr. Simon Sonntag, CEO & Co-Founder of Virtonomy, has been working in the medical device field for over a decade and has experienced first-hand the challenges of developing and bringing a medical device to market and in clinical practice. Using simulation technology in this field for over ten years now, he has seen the tremendous potential of combining it with digital patient twins – not only to support medical device development but also for the regulatory process and clinical trials. He learned that there is a huge demand from the industry to reduce the time, cost, and risk involved in developing medical products, and these so-called in silico methods can achieve this. Therefore, in 2020 he co-founded Virtonomy with the clear mission to change this industry. Virtonomy stands as a pioneer in the realm of digital patient twins, introducing an end-to-end platform that seamlessly merges real world patient data, artificial intelligence, multiphysics simulations, and predictive analytics to support the medical industry. Virtonomy addresses a significant problem: mitigating the elevated risks, complexities, and time constraints entailed in medical device development, ultimately streamlining the journey to market introduction. Utilizing their advanced technology, they enable medical device developers to conduct product development and testing in the computer, reducing traditional in vivo (animal/human) and in vitro (laboratory) tests with so-called in silico experiments (computer). This makes it possible to explore the interaction of the medical device with physically accurate modeling of the in vitro setup or anatomy of the target population based on real patient data as input. Backed by the FDA and EU Commission, it’s set to cover over 40% of approvals via virtual patients and simulations. The vision of Virtonomy extends to personalized medicine in the future.

Kelsey Crossman

American administrative professional with experience in Business Development in Medical Simulation and Marketing of a European Contract Research Organization managing pharmaceutical trials and medical device studies. Twelve years of experience in complex medical/administrative document management in both private and corporate medical offices and metropolitan area hospitals. Currently, she is the business development manager for Simq GmbH.

Anthony Fejes

Dr. Anthony Fejes holds undergraduate degrees in biochemistry and Independent Studies (Bioinformatics) from the University of Waterloo, as well as a Masters degree in Microbiology & Immunology and a PhD in Bioinformatics from the University of British Columbia. Anthony started his science career as the scientific co-founder and Chief Scientific Officer at Zymeworks Inc, before working for companies such as Fabric Genomics and Tenaya Therapeutics in the Bay Area and New York based SolveBio. His experience pairs over 20 years of professional experience as a programmer with a deep background in genomics, biochemistry and data analysis, as well as a decade of management and startup experience. He is CEO and co-founder at HTuO Biosciences.

Steven Kreuzer

Dr. Steven Kreuzer is a Senior Managing Engineer at Exponent Inc, a scientific and engineering consulting company, based in the Natick, MA (Boston) office. Dr. Kreuzer received his Ph.D. in Mechanical Engineering from the University of Texas at Austin and has been a consultant with Exponent since 2013. He specializes in stress analysis using both experimental and computational approaches, which include finite element analyses and custom mechanical systems. He has worked with numerous companies and projects, supporting everything from design assessments to analyses and tests supporting regulatory submissions. He has been an active participant in the Living Heart Project with Dassault Systèmes since its inception. He serves as a co-lead of the modeling team on the FDA / Dassault ‘ENRICHMENT’ in silico clinical trial. Dr. Kreuzer has applied his expertise to numerous domains, including electronics, aerospace, energy storage, and biomedical applications.

Peter Eltes

Peter Eltes

Dr. Péter Endre Éltes is a board-certified spine surgeon who has authored over 30 scientific publications and supervised multiple medical and engineering students throughout his academic career.
He has been devoted to biomechanical research and clinical practice at the National Center for Spinal Disorders in Budapest, Hungary.
In 2018, Dr. Éltes co-founded and has since led the In Silico Biomechanics Laboratory. Here, he delved into the intricate world of patient-specific spinal care with the vision of establishing novel techniques to enhance the quality of everyday clinical practice. To achieve this, he introduced various cutting-edge technologies such as surgery planning and finite element modeling, all tailored to the individual patient. Additionally, he developed and implemented a workflow to utilize 3D printing for improved patient outcomes.

Moderators: 

Zsolt Pásztor

Zsolt Pásztor

Zsolt is a passionate 3D printing specialist in titanium 3D Printing and surface treatment.
Zsolt is co-founder and Managing Director of PREMET, a 3D-printing-focused innovative medical device producer. PREMET specialises in the manufacturing of dental products and custom-made human and veterinary implants. It puts a high emphasis on R&D, covering all steps of production, and has been involved in several international projects. PREMET pays special attention to tests and simulations, including in-silico simulations. PREMET has ISO 9001 and ISO 13485 certifications.
In addition to his professional activities, Zsolt plays a leading role in different organizations. He is a Community Manager at 3DHEALS, co-founder and Vice President of the Hungarian Additive Technology Association, and Leader of the “3D Printing in the Health Sector” working group of MediKlaszter, an accredited Med Tech cluster. In MediKlaszter, he also acts as Director of International Relations.
Zsolt also has sound experience in preparing and implementing international R&D and capacity-building projects.

Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

orthopedics sf

San Francisco: 3D Printing and AI in Orthopedics (In-Person, Hybrid)

Join us for an exciting in-person event at 555 California Street, San Francisco, CA, USA! Discover the latest advancements in 3D technologies for orthopedics. Learn from industry experts, engage in lively discussions, and network with like-minded professionals. This event is a must-attend for anyone interested in the intersection of 3D printing and orthopedics. Don’t miss out on this opportunity to stay at the forefront of innovation in healthcare. The in-person capacity is only 30 people. Registration closes Feb 9th, 2024 for security reasons!

Speakers:

Craig Rosenblum

Craig Rosenblum is the President of Himed. Over 30 years of operation, Himed has become a global leader in calcium phosphate based biomaterial production and has developed proprietary plasma spray coatings and surface treatments. Craig and his team collaborate directly with dental and medical device manufacturers around the world to provide innovative biomaterial solutions. Craig discovered a unique application for MATRIX MCD® post-processing additively manufactured titanium implantable devices using Himed’s proprietary and biocompatible resorbable blast media. Himed has since formed a strategic partnership with Lithoz, a global market leader in 3D printing, to develop new bioceramic bioinks for medical 3D printing. Craig received his B.S. and M.S. degree in Materials Science & Engineering with a Biomaterials concentration from The Johns Hopkins University (Baltimore, MD). With a focus in biomaterials characterization, his groundbreaking research explored the variations in the microstructure and mechanical properties of dental enamel. These studies were the first to demonstrate the unique heterogeneous nature of enamel. Craig currently serves on The Johns Hopkins University Materials Science & Engineering Advisory Board.

Kerim Genc

Kerim serves as a Product Manager for the Simpleware Group at Synopsys, bringing over a decade of expertise to the role. Joining Simpleware in 2011 to oversee regional sales, he seamlessly navigated through progressively influential positions, including global sales and business development, culminating in his current role as a Product Manager. A highly qualified professional, Kerim earned his BS and MS in biomechanics from the University of Calgary and the Pennsylvania State University, respectively. He further solidified his academic credentials with a Ph.D. in Biomedical Engineering from Case Western Reserve University, where he utilized computational methods to investigate innovative countermeasures addressing spaceflight-induced bone loss and fracture risk.

Alyssa Huffman

Alyssa Huffman is the inventor, founder, and CEO of Allumin8. A company dedicated to bringing research-backed innovation to 3D printed orthopedic and spine hardware in an effort to increase implant survivorship and reduce the likelihood of catastrophic revisions. Allumin8’s implants (including the A8 Integr8 Porous Pedicle Screw System – not cleared for sale in the US) are designed to match the trabecular pattern of bone with the intent to study a variety of biologic therapeutics delivered through or drawn into the hardware. No change in surgical technique. No change in care. No change in pricing. Simply providing options that never before existed in hardware for the betterment of the patient. Licensing opportunities are available by contacting alyssa@allumin8.com.

Dean Hughes

dean hughes

Dean Hughes is the Regional Technical Director at Smith and Nephew Orthopedics. He earned his Bachelor’s and Master’s in Mechanical Engineering from the University of Memphis and an MBA from Christian Brothers University. Dean is a registered professional engineer in the State of Tennessee. Dean has designed, developed, and launched over 50 orthopedic implants and instruments projects with Smith and Nephew over the last 22 years. He also holds 15 US patents and several patents that are pending. Dean resides in Memphis with his wife Linda and enjoys restoring classic cars in his ‘spare’ time.

Organizer:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

Design for Medical 3D Printing

Design plays a pivotal role in the realm of 3D-printed medical devices, serving as a linchpin in ensuring safety, efficacy, and innovation. The unique capabilities of 3D printing technology allow for the creation of highly customized and intricate medical devices, tailored to the specific needs of individual patients or medical applications. An effective design process ensures that these devices not only meet their intended functions but also adhere to critical standards of biocompatibility, sterilization, and regulatory compliance. Precise design optimization can significantly reduce material waste, production time, and costs while enhancing the overall performance of these devices, making them more accessible and affordable to a wider range of patients and healthcare providers. Moreover, design innovation in 3D-printed medical devices can address unmet medical needs and improve patient outcomes. Customization is a hallmark of 3D printing, allowing for patient-specific implants, prosthetics, and anatomical models for surgical planning. Furthermore, the technology enables the integration of complex features such as lattice structures, drug delivery systems, and biomimetic designs that were previously unattainable through traditional manufacturing methods. In research and development, 3D printing facilitates rapid prototyping, enabling iterative testing and refinement, ultimately leading to breakthroughs in medical device functionality and performance. Thus, an emphasis on thoughtful and creative design in 3D printing for medical devices is paramount in advancing the healthcare industry, improving patient care, and driving innovation in the field. In this upcoming virtual event, 3DHEALS invites you to join a panel of design experts and startup founders to explore the future of DfAM (Design for Additive Manufacturing).

Speakers:

Nicholas Jacobson

Nicholas Jacobson

Nicholas Jacobson is trained as both an architect and a computational designer. He has a particular interest in a technically synthetic and logically rigorous approach to form and fabrication. As a practiced architect and designer, he has designed buildings for the aerospace industry, concert halls, ultra-high-end residential, operating rooms, and structures in extreme environments. Currently, he researches and develops novel methods and tools for complex surgeries leveraging disparate computational methods from numerous fields including Architecture, Animation, Fashion, Regenerative Medicine, and Structural Engineering. This work focuses on three areas of patient-specific focused development: Diagnostics, Prosthetics, and Implants. His work and research have been published in books, scholarly journals, magazines, and newspapers; these include: ACADIA, AD, CAADRIA, Code LA, Huffington Post, Modern Luxury, Nature, New York Times, Popular Science, Sky News, and Vogue and shown work both nationally and internationally. He has lectured at Harvard University, Stanford University, University of North Carolina, and the University of Denver and for companies such as AutoDesk, Zaha Hadid Architects, Medtronic, Edwards Lifesciences, Thornton Tomasetti, Stratasys, Trimble, and the Keynote speaker for AMUG 2023. He received a Bachelor’s in Architecture (Summa Cum Laude) from the University of Wisconsin SARUP and an M.Des (Design Technology) from Harvard GSD and the Harvard Business School.

Gokce (Gilly) Yildirim

Gilly is a biomedical engineer, inventor, and an operations leader with 20 years of medical device industry and scientific research experience, and currently is the founder and CEO of Vent Creativity Corporation, an AI based digital twin surgical planning and decision-making software serving the orthopaedics and healthcare community. Gilly started his career in industrial robotic automation, and then translated this knowledge to human biomechanics, design, testing, and regulatory filing of medical devices. Gilly previously advised a multi-billion-dollar industry on product portfolio needs and M&A considerations for multiple $5MM+ NPV projects. He also advised C-level executives for their medical device regulatory and business strategy needs. Gilly has been instrumental in the regulatory testing, documentation, and filing aspects of 13 Class II, 1 IDE, and 1 IND FDA medical device products. Gilly has over 25 peer reviewed published articles in the orthopaedic medical device field. Gilly holds 13 published or granted patents in the field of big-data driven surgery, additive manufacturing for medical devices, and robotic surgery, and presented foundational research at various peer-reviewed conferences and publications. Gilly holds a Bachelor of Science in Industrial Engineering from NJIT, a Master of Science in Biomedical Engineering and an MBA from Columbia University.

Elissa Ross

Elissa Ross is a mathematician and the CEO of Toronto-based startup Metafold 3D. Metafold makes an engineering design platform for additive manufacturing, with an emphasis on supporting engineers using metamaterials, lattices and microstructures at industrial scales. Elissa holds a PhD in discrete geometry (2011), and worked as an industrial geometry consultant for the 8 years prior to cofounding Metafold. Metafold is the result of observations made in the consulting context about the challenges and opportunities of 3D printing.

Moderator:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

3D Printing Organ on a Chip, Microfluidics Devices 

The latest advantages of utilizing 3D printing for the fabrication of microfluidic devices and organ-on-a-chip systems have opened up new horizons in biomedical research and personalized medicine. 3D printing offers precision and flexibility that traditional methods often cannot achieve, enabling the rapid and cost-effective production of intricate microscale structures that mimic the complexity of human organs and tissue environments. Researchers can now customize microfluidic devices to emulate specific physiological conditions, allowing for more accurate drug testing and disease modeling. Moreover, the ability to integrate multiple materials in a single print enables the recreation of tissue interfaces and vascular networks, fostering the development of more lifelike organ-on-a-chip platforms. This innovative approach promises to revolutionize drug development, toxicology testing, and disease understanding, offering a glimpse into a future where personalized medicine is driven by these advanced, 3D-printed microsystems.

Speaker:

Elliot McAllister

Elliot McAllister is the Founder of Skyphos, the first 3D printing fabrication system enabling a shift from the enterprise of mold-based prototyping and production for healthcare-based needs. Mr. McAllister has experience and expertise in Materials Science, Mechanical Engineering, Optics and developing microfluidic platforms. He has an advanced degree from Virginia Tech where his research focused on micro-3D printing 4 different forms of solid matter. Based on additive manufacturing technology, Mr. McAllister launched Skyphos to eliminate the barriers to entry of new applications in medical diagnostics and focuses on micro-scale requirements of microfluidics (uF), Lab-on-a-Chip (LOAC), Point-of-Care (POC) devices, as well as the needs of the sensors community. Skyphos leverages robotics, specialized materials, and the innate flexibility of a Digital Manufacturing platform to enable start-ups to get to market sooner – and large companies to reduce costs associated with developing new ones.

Natan Barros

I am a dedicated researcher with a passion for academic and translational research. My journey began with a bachelor’s degree in chemistry, where I developed a keen interest in biochemistry and polymers. Pursuing advanced studies in biotechnology at Sao Paulo State University (UNESP), one of Brazil’s leading institutions, I delved into biomaterials science and tissue engineering during my master’s and Ph.D. There, I focused on developing functional biomaterials for drug delivery and chronic wound healing. In 2019, I embarked on a transformative experience as a visiting researcher at the University of California, Los Angeles (UCLA) under the guidance of Dr. Ali Khademhosseini. At UCLA, I pioneered a microfluidic in vitro platform to model skin and explored innovative areas such as 3D bioprinting of functional skeletal muscle tissues and localized melanoma treatment. My dedication to groundbreaking research continued at the Terasaki Institute for Biomedical Innovation (TIBI), where I collaborated with esteemed mentors like Dr. Khademhosseini and Dr. HanJun Kim. Together, we investigated cutting-edge projects funded by NIH, including drug-eluting biomaterials for chemoembolization and bioengineered solutions for enterocutaneous fistula healing. Now, as a faculty fellow, I lead my research group at TIBI, focusing on shear-thinning hydrogels, microfluidic droplet platforms, and 3D bioprinted in vitro tissues.

Soon Seng Ng

Dr. Soon Seng Ng is an accomplished biomedical scientist and Director of Biology at Systemic Bio, leading groundbreaking research in 3D bioprinting and MPS development. With prior roles at Sana Biotechnology, Imperial College London, and Stanford University, Dr. Ng has made significant contributions in liver stem cell biology, disease modeling, drug discovery, and liver cell therapy. He has over 20 peer-reviewed publications, and his work has garnered awards and multi-million dollars grants, highlighting his impact on translational medicine and his commitment to bringing new therapies to patients. Dr. Ng’s dedication to advancing biomedical research and improving patient outcomes establishes him as a highly influential figure in the field.

Anna Bickham

Anna Bickham is the cofounder and CEO of Acrea 3D. Anna received her Ph.D. in chemistry from Brigham Young University in Dr. Adam Woolley’s lab, focusing on traditional and 3D printed fabrication of various medical and electrical microfluidic devices. She then spun Acrea 3D out of the technology used during her doctoral program, originating out of Dr. Greg Nordin’s lab. Acrea 3D specializes in micro-scale DLP-SLA printing of void features down to 20 um. By leveraging mechanical, software, and physical techniques, Acrea 3D enables true microfluidic 3D printing.

Register (Free)

Moderator:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

Biomaterials Bioinks for 3D Printing

Biomaterial development plays a crucial role in advancing the 3D printing industry, particularly in the fields of healthcare, regenerative medicine, and tissue engineering. The ability to create complex, patient-specific structures using 3D printing and bioprinting opens up unprecedented possibilities for personalized medical treatments and advancements in healthcare. Biomaterials specifically designed for 3D printing (or Bioinks for Bioprinting) enable the fabrication of intricate, biocompatible structures with precise mechanical and biological properties. By tailoring biomaterial formulations to mimic the characteristics of native tissues, researchers and clinicians can create scaffolds, implants, and organ constructs that promote cell growth, tissue regeneration, and integration with the host body. Moreover, the continuous exploration and refinement of biomaterials for 3D printing contribute to the development of innovative medical devices, drug delivery systems, and surgical tools. As biomaterial development progresses, it drives the expansion of the 3D printing industry’s capabilities, offering new solutions for personalized healthcare and revolutionizing patient care and treatment outcomes. In this upcoming event, we invite a panel of experts to dive deep into the current status, immediate future, and long-term outlook on biomaterials/bioink for healthcare 3D printing applications.

Speakers:

Julien Barthes

3DEUS

Dr. Julien BARTHES, CEO and co-founder of 3Deus Dynamics holds an engineering degree in physical chemistry of polymers and a PhD in biomaterials science. He has a solid experience in tissue engineering and additive manufacturing He experienced project leading of different type of funding and domains, as PANBIORA-H2020 and IMMODGEL-FP7 (European projects on biomaterials/implants) or FASSIL (National FUI project on AM). During these projects he maturated a strong experience in the field of tissue engineering, with a deep focus on cell and biomaterials interaction, as well as in AM technologies. He was involved in both academic and industrial R&D projects with a constant implication in the scientific dissemination, with more than 25 articles published. Before starting 3Deus Dynamics in 2020, he was working for the past 6 years in a MedTech startup developing ENT medical devices and he managed the development of medical devices from the laboratory stage to their marketing.

Gurkaran Chowdhry

Gurkaran Chowdhry is a polymer physicist and a co-founder of 3D BioFibR Inc, a pioneering biotechnology company at the forefront of biomaterial innovation and manufacturing. As the Director of Business Development and Operations, he has raised $5 million in funding within three years, enabling the successful commercialization of five groundbreaking biomaterial products through direct sales and strategic partnerships. As an innovative leader, Gurkaran is determined to bring 3D BioFibR to the forefront of biomaterial fabrication and help move 3D bioprinting technologies towards clinical applications.

Rao S. Bezwada 

Rao Bezwada

An accomplished scientist and entrepreneur, Rao S. Bezwada, Ph.D. established Bezwada Biomedical, an innovation-based and technology-driven research company, in 2003. The company is focused on developing a wide range of novel absorbable polymeric biomaterials to enhance quality of life by producing next generation bioabsorbable medical devices with therapeutic applications. Dr. Bezwada earned a doctorate in chemistry from the Stevens Institute of Technology in New Jersey and has over 40 years of research experience in the medical device industry, including 20 years of service at Ethicon, Inc. (a Johnson & Johnson Company). While at Ethicon, Dr. Bezwada’s research and development efforts led to the launch of a number of products, including Monocryl®, a new ultra-pliable synthetic absorbable monofilament suture. This product has represented worldwide sales of more than two (2) billion dollars since its launch in 1993 and current annual sales of over 100 million dollars. In recognition of this invention, along with its development, Johnson & Johnson, Inc. awarded Dr. Bezwada the prestigious Johnson Medal in 1996. Dr. Bezwada has been a prolific inventor and has been issued more than 135 U.S. patents on absorbable polyurethanes, absorbable amino acid polymers, absorbable polyester amides, absorbable polyoxaesters, and controlled release polymers. FDA-approved products such as MONTAGE® Putty, MONTAGE Fast Set Putty, Montage Flowable Putty, and PERMATAGE Putty, marketed by Abyrx for wound healing and bone applications, are based on Bezwada Biomedical’s absorbable polyurethane technology. Dr. Bezwada has also pioneered specialty bio-inks for 3D printing applications. In addition to his passion for science and technical accomplishments, Dr. Bezwada has also established a non-profit organization, Society for Basic Needs, in India. This organization has a mission aimed at improving the quality of life for those less fortunate by providing them with essential amenities and opportunities for health and education.

Neeti Srivastava

Neeti Srivastava is the Director, R&D, Business Development and Quality Affairs at Bezwada Biomedical. Dr. Srivastava has 14 years of experience in development of absorbable polymers for medical devices, drug delivery and 3D Bioprinting. She made contributions for the development of absorbable polyurethane formulation that received 510K approval from the FDA and was commercialized as a bone hemostat by Abyrx, Inc. She led the quality efforts resulting in ISO 9001 certification of Bezwada Biomedical. Furthermore, Dr. Srivastava has authored several scholarly articles and has been published in international scientific journals, along with presentations at American Chemical Society and Society for Biomaterials conferences.

Nicole Black

Dr. Nicole Black is the Vice President of Biomaterials and Innovation for Desktop Health. Nicole grew up in Michigan before moving to Boston to attend Boston University as Trustee Scholar. There, she studied Biomedical Engineering with a minor in Mechanical Engineering and a concentration in Nanotechnology. Following graduation, Nicole worked briefly at a startup company developing drug-eluting implants for the treatment of epilepsy. In 2014, Nicole started her PhD work at Harvard University in the lab of Professor Jennifer Lewis. During graduate school, Nicole worked on interdisciplinary projects between the Wyss Institute for Biologically Inspired Engineering and Mass Eye and Ear hospital, alongside Dr. Aaron Remenschneider and Dr. Elliott Kozin. Specifically, she focused on developing biomimetic eardrum grafts using novel materials and 3D printing technologies. Nicole graduated with her PhD in 2020 and started a postdoctoral fellowship as a Gliklich Healthcare Innovation Scholar. During this time, Nicole co-founded Beacon Bio, a startup company developing 3D-printed regenerative tissue grafts. Beacon Bio was named the runner-up prize winner in the MassMEDIC IGNITE pitch competition and a $25k prize winner in the Harvard i-Lab President’s Innovation Challenge. As the CEO, Nicole led an early-stage acquisition of Beacon Bio to Desktop Metal in 2021. Nicole currently leads a team at Desktop Health, a healthcare division of Desktop Metal, to bring the PhonoGraft device for eardrum perforation repair to patients. She is also leading partnerships with other medtech companies to help them realize the potential of the 3D-Bioplotter for innovative medical devices. Nicole’s accolades include the Collegiate Inventors Competition Graduate Team Winner (2018), the Baxter Young Investigator Award (2020), the Lemelson-MIT Student Prize (2021), and Forbes 30 Under 30 in Manufacturing and Industry (2022). Nicole is passionate about inspiring the next generation of scientists and engineers, and she has led a variety of outreach and mentoring programs for K-12 and undergraduate students. In her free time, Nicole enjoys crafting, reading, kayaking, and spending time with her cat, Merlin.

Moderator:

Craig Rosenblum

Craig Rosenblum

Craig Rosenblum (TWITTER: @RosenblumCraig) is the Vice President & General Manager of Himed. Over 30 years of operation, Himed has become a global leader in calcium phosphate based biomaterial production and has developed proprietary plasma spray coatings and surface treatments. Craig and his team collaborate directly with dental and medical device manufacturers around the world to provide innovative biomaterial solutions. Craig discovered a unique application for MATRIX MCD® post-processing additively manufactured titanium implantable devices using Himed’s proprietary and biocompatible resorbable blast media. Himed has since formed a strategic partnership with Lithoz, a global market leader in 3D printing, to develop new bioceramic bioinks for medical 3D printing. Craig received his B.S. and M.S. degree in Materials Science & Engineering with a Biomaterials concentration from The Johns Hopkins University (Baltimore, MD). With a focus in biomaterials characterization, his groundbreaking research explored the variations in the microstructure and mechanical properties of dental enamel. These studies were the first to demonstrate the unique heterogeneous nature of enamel. Craig currently serves on The Johns Hopkins University Materials Science & Engineering Advisory Board.

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.

Point of Care 3D Printing

Are you ready to revolutionize healthcare from the comfort of your screen? We’re thrilled to invite you to an exceptional virtual event that’s set to reshape the way we think about Point of Care Additive Manufacturing! In this upcoming virtual event, we will not only continue to highlight 3D printing applications but also will broaden our perspectives on how it can be seamlessly integrated into existing healthcare systems and other 3D technologies like AR/VR, and virtual surgical planning. The invited speakers are from three different continents, bringing us insights, experiences, and inspirations with their unique lenses to the 3D world. 

Speakers:

Erik Boelen

After his masters in biomedical engineering and his PhD in biomaterials, Erik started his career in medical 3D printing as Product Specialist for Mimics (medical image processing software) at Materialise in 2007. In 2010 he spent one year in Kuala Lumpur, Malaysia for Materialise to build the sales and support team for APAC. Back in Materialise Headquarters in Belgium, he assumed the role of Marketing Manager for the Mimics Innovation Suite. In 2012, Erik joined the startup Xilloc as its Chief Operations Officer. Xilloc designs and manufactures custom-made medical devices and was a pioneer in using 3D printing for implants (we made the world’s first complete 3D printed titanium mandible). In his role as COO, Erik was mainly responsible for sales, marketing and quality management and he built a QMS for ISO 13485 from scratch and got it certified. After nearly a decade, in 2021 he decided to take the plunge and start his own company QasE3D (pronounced as Case-three-dee) as a consultant for Quality Management and 3D printing. He currently helps medical device companies and PoC facilities to implement a digital QMS for ISO 13485 and acts as an agent for several companies with innovative 3D technology to help surgeons.

Jay Banerjee

Jay is the co-founder and President of ImmersiveTouch, a pioneer in augmented reality clinical intelligence & surgical navigation software. Jay is responsible for running all facets of the business and has a proven executive management track record driving growth and innovation in healthcare. He is a advocate for improving patient care and enhancing physician capabilities, an accomplished speaker, and a contributor to publications such as Forbes and Business Insider. He recently completed a certification in Economics of Blockchain and Digital Assets from The Wharton school. Prior to joining ImmersiveTouch in 2014, Jay was a project manager at JPMorgan Chase and Co. and a business consultant at Illinois Business Consulting. Jay holds a BS in Industrial Engineering, Finance, and Economics from the University of Illinois at Urbana-Champaign and an MA in Consciousness and Human Potential from Maharishi International University.

Shannon Walters

Shannon Walters navigates this world with a passion to seek practical applications of knowledge and technology. As Executive Technical Director at the 3D Quantitative and Imaging Laboratory he leads a team approaching 40 people to apply this passion in the medical image processing realm. With an educational background in Radiology Management and Information Systems, he routinely seeks synergies that link the needs of clinicians/radiologist to the capabilities of technologists. With more than 17 years of experience dedicated to 3D Imaging, Shannon has a unique perspective regarding 3D Imaging software and 3D Printing.

Rodrigo Salazar-Gamarra

Prof. Dr. Rodrigo Salazar-Gamarra DDS, MSc, Ph.D. Is CEO of M3D, and a technological innovation consultant for healthcare, awarded by the MIT Technology Review as “Humanitarian Innovator 2018 for Latin America” for his actions as director and researcher of the “Plus Identity Institute (+ID)” in Brazil. Associate researcher at the “Renato Archer TI Center (CTI)”, from the Ministry of Science & Innovation of Brazil. Professor at the Postgraduation School of the “Universidad Peruana Cayetano Heredia (UPCH)” , Maxillofacial Prosthodontics professor at the “Universidad Cientifica del Sur(UCSUR)”, and Digital dentistry teacher at the “Universidad Peruana de Ciencias Aplicadas(UPC)” in Perú. Volunteer at the Digital Digital Transformation Laboratory of the Digital Government Secretariat of the Presidency of the Council of Ministers (PCM) of Peru. Former IAA President, VP of the Latin American Society of Maxillofacial Prosthodontics, and member of the Digital Dentistry Society.

Chris LeCastillo

Chris LeCastillo is the Innovations Manager for the Stanford 3D and Quantitative Imaging Laboratory, helping lead a team of nearly 40 under Shannon’s directorship. His extensive background in IT, 10 years in the medical field as a Radiologic Technologist, and education in Imaging Informatics and Health Leadership help him drive forward meaningful innovations in the 3DQ Lab like 3D Printing and Clinical AI. Chris also manages the XR Neurosurgical Navigation program at Stanford.

Moderator:

Dr. Jenny Chen

jenny chen

Dr. Jenny Chen is trained as a neuroradiologist, and founder/CEO of 3DHEALS. Her main interests include next-generation education, 3D printing in the healthcare sector, automated biology, and artificial intelligence. She is an angel investor who invests in Pitch3D companies.