Healthcare 3D Printing in Academia

Healthcare 3D Printing in Academia

3D Printed abdominal aortic aneurysm © Materialise

3D Printed abdominal aortic aneurysm

 

Healthcare 3D Printing in Academia – List of published literatures

This is a growing list of published articles relevant to 3DHELAS and Healthcare 3D Printing. The list is not comprehensive of ALL publications but intends to inspire multidisciplinary innovations. We will update this list pretty frequently. If you have an article in press, or if your article is not included on this list and you would like to be included on the list, please feel free to contact us.

  • Friedman, T., Michalski, M., Goodman, T. R., & Brown, J. E. (2015). 3D printing from diagnostic images: a radiologist’s primer with an emphasis on musculoskeletal imaging—putting the 3D printing of pathology into the hands of every physician. Skeletal Radiology, 1–15. http://doi.org/10.1007/s00256-015-2282-6

  • MD, I. K., PhD, M. J., MS, J. A. E., MD, M. A., PhD, D. T. S., & MD, J. E. (2015). Interobserver variability in physician-modified endograft planning by comparison with a three-dimensional printed aortic model. Journal of Vascular Surgery, 1–8. http://doi.org/10.1016/j.jvs.2015.09.044

  • Vaquerizo, B., Theriault-Lauzier, P., & Piazza, N. (2015). Percutaneous Transcatheter Mitral Valve Replacement: Patient-specific Three-dimensional Computer-based Heart Model and Prototyping. Revista Española De Cardiología (English Edition), 1–9. http://doi.org/10.1016/j.rec.2015.08.005

  • Larsson, L., Decker, A. M., Nibali, L., Pilipchuk, S. P., Berglundh, T., & Giannobile, W. V. (2015). Regenerative Medicine for Periodontal and Peri-implant Diseases. Journal of Dental Research, 1–12. http://doi.org/10.1177/0022034515618887

  • Khaled, S. A., Burley, J. C., Alexander, M. R., Yang, J., & Roberts, C. J. (2015). 3D printing of tablets containing multiple drugs with defined release profiles. International Journal of Pharmaceutics, 494(2), 643–650. http://doi.org/10.1016/j.ijpharm.2015.07.067

  • Hourd, P., Medcalf, N., Segal, J., & Williams, D. J. (2015). A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes. Regenerative Medicine, 10(7), 863–883. http://doi.org/10.2217/rme.15.52

  • Zhang, X., & Zhang, Y. (2015). Tissue Engineering Applications of Three-Dimensional Bioprinting. Cell Biochemistry and Biophysics, 1–6. http://doi.org/10.1007/s12013-015-0531-x

  • Giannopoulos, A. A., Chepelev, L., Sheikh, A., Wang, A., Dang, W., Akyuz, E., et al. (2015). 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Printing in Medicine, 1–20. http://doi.org/10.1186/s41205-015-0002-4

  • Cai, T., Rybicki, F. J., Giannopoulos, A. A., Schultz, K., Kumamaru, K. K., Liacouras, P., et al. (2015). The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Printing in Medicine, 1–9. http://doi.org/10.1186/s41205-015-0003-3

  • Rybicki, F. J. (2015). 3D Printing in Medicine: an introductory message from the Editor-in-Chief. 3D Printing in Medicine, 1–1. http://doi.org/10.1186/s41205-015-0001-5

  • VanKoevering, K. K., Morrison, R. J., Prabhu, S. P., Torres, M. F. L., Mychaliska, G. B., Treadwell, M. C., et al. (2015). Antenatal Three-Dimensional Printing of Aberrant Facial Anatomy. Pediatrics, 136(5), e1382–e1385. http://doi.org/10.1542/peds.2015-1062

  • Aita-Holmes C1,Liacouras P2, Wilson WO Jr3, Grant GT4. Digital capture, design, and manufacturing of an extraoral device for a clarinet player with Bell’s palsy. J Prosthet Dent. 2015 Aug;114(2):297-300. http://dx.doi.org/10.1016/j.prosdent.2015.02.029
  • Coelho, P. G., Hollister, S. J., Flanagan, C. L., & Fernandes, P. R. (2015). Bioresorbable scaffolds for bone tissue engineering: Optimal design, fabrication, mechanical testing and scale-size effects analysis. Medical Engineering and Physics, 37(3), 287–296. http://doi.org/10.1016/j.medengphy.2015.01.004
  • Cohen, D. L., Lipton, J. I., Bonassar, L. J., & Lipson, H. (2010). 20823507. Additive manufacturing for in situ repair of osteochondral defects Biofabrication, 2(3), 035004. http://doi.org/10.1088/1758-5082/2/3/035004
  • BS, K. J. D. M., MD, J. M., MS, S. D. C. M., MD, J. M. R., MD, J. G. F., MD, J. M., et al. (2015). Individualizing Management of Complex Esophageal Pathology Using Three-Dimensional Printed Models. The Annals of Thoracic Surgery, 100(2), 692–697. http://doi.org/10.1016/j.athoracsur.2015.03.115
  • Itagaki, M. W. (2015). Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagnostic and Interventional Radiology, 21(4), 338–341. http://doi.org/10.5152/dir.2015.14469
  • Tai, B. L., Wang, A. C., Joseph, J. R., Wang, P. I., Sullivan, S. E., McKean, E. L., et al. (2015). A physical simulator for endoscopic endonasal drilling techniques: technical note. Journal of Neurosurgery, 1–6. http://doi.org/10.3171/2015.3.JNS1552
  • Weinstock, P., Prabhu, S. P., Flynn, K., Orbach, D. B., & Smith, E. (2015). Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. Journal of Neurosurgery: Pediatrics, 1–6. http://doi.org/10.3171/2015.3.PEDS14677
  • Grant, G. T., Liacouras, P., Santiago, G. F., Garcia, J. R., Rakan, Al, M., Murphy, R., et al. (2014). 24835867. Restoration of the Donor Face After Facial Allotransplantation: Digital Manufacturing Techniques Annals of Plastic Surgery, 72(6), 720–724. http://doi.org/10.1097/SAP.0000000000000189
  • Huotilainen, E., Paloheimo, M., Salmi, M., Paloheimo, K. S., Bjorkstrand, R., Tuomi, J., et al. (2014). 23901144. Imaging requirements for medical applications of additive manufacturing Acta Radiologica, 55(1), 78–85. http://doi.org/10.1177/0284185113494198
  • Huotilainen, E., Jaanimets, R., Valášek, J., Marcián, P., Salmi, M., Tuomi, J., et al. (2014). 24268714. Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process Journal of Cranio-Maxillofacial Surgery, 42(5), e259–e265. http://doi.org/10.1016/j.jcms.2013.10.001
  • Kiarashi, N., Nolte, A. C., Sturgeon, G. M., Segars, W. P., Ghate, S. V., Nolte, L. W., et al. (2015). Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Medical Physics, 42(7), 4116–4126. http://doi.org/10.1118/1.4919771
  • Lethaus, B., Poort, L., Böckmann, R., Smeets, R., Tolba, R., & Kessler, P. (2012). 21296586. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients Journal of Cranio-Maxillofacial Surgery, 40(1), 43–46. http://doi.org/10.1016/j.jcms.2011.01.007
  • DDS, Y. L., DDS, Y. J., Bin Ye DDS, DDS, J. H., DDS, Q. C., & DDS, S. Z. (2015). Treatment of Dentofacial Deformities Secondary to Osteochondroma of the Mandibular Condyle Using Virtual Surgical Planning and 3-Dimensional Printed Surgical Templates. Journal of Oral Maxillofacial Surgery, 1–20. http://doi.org/10.1016/j.joms.2015.06.169
  • Liacouras, P., Garnes, J., Roman, N., Petrich, A., & Grant, G. T. (2011). 21262404. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: A clinical report. The Journal of Prosthetic Dentistry, 105(2), 78–82. http://doi.org/10.1016/S0022-3913(11)60002-4
  • PhD, S. M. M., PhD, A. B. M. D., Schiariti, G., MD, G. B., & DDS, C. M. M. (2015). Computer-Aided Design and Computer-Aided Manufacturing Cutting Guides and Customized Titanium Plates Are Useful in Upper Maxilla Waferless Repositioning. Journal of Oral Maxillofacial Surgery, 73(4), 701–707. http://doi.org/10.1016/j.joms.2014.10.028
  • Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., Machado, B. I., et al. (2010). 20308113. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 368(1917), 1999–2032. http://doi.org/10.1098/rsta.2010.0010
  • Ogden, K. M., Aslan, C., Ordway, N., Diallo, D., Tillapaugh-Fay, G., & Soman, P. (2015). Factors Affecting Dimensional Accuracy of 3-D Printed Anatomical Structures Derived from CT Data. Journal of Digital Imaging. http://doi.org/10.1007/s10278-015-9803-7
  • Pinto, J. M., Arrieta, C., Andia, M. E., Uribe, S., Ramos-Grez, J., Vargas, A., et al. (2015). Sensitivity analysis of geometric errors in additive manufacturing medical models. Medical Engineering and Physics, 37(3), 328–334. http://doi.org/10.1016/j.medengphy.2015.01.009
  • Roldán-Alzate, A., García-Rodríguez, S., Anagnostopoulos, P. V., Srinivasan, S., Wieben, O., & François, C. J. (2015). Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation. Journal of Biomechanics, 48(7), 1325–1330. http://doi.org/10.1016/j.jbiomech.2015.03.009
  • Ryan, J. R., Chen, T., Nakaji, P., Frakes, D. H., & Gonzalez, L. F. (2015). Ventriculostomy Simulation Using Patient-Specific Ventricular Anatomy, 3D Printing, and Hydrogel Casting. World Neurosurgery, 1–7. http://doi.org/10.1016/j.wneu.2015.06.016
  • Wang, J.-Q., Zhao, C.-P., Sun, X., Shi, Y., Zhang, Z.-A., Li, Y.-N., et al. (2015). Printed Three-dimensional Anatomic Templates for Virtual Preoperative Planning Before Reconstruction of Old Pelvic Injuries: Initial Results. Chinese Medical Journal, 128(4), 477–6. http://doi.org/10.4103/0366-6999.151088
  • Watson, R. A. (2014). 24411417. A Low-Cost Surgical Application of Additive Fabrication. Journal of Surgical Education, 71(1), 14–17. http://doi.org/10.1016/j.jsurg.2013.10.012
  • Werner, H., Santos, dos, J. R. L., Fontes, R., Daltro, P., Gasparetto, E., Marchiori, E., & Campbell, S. (2010). 20205157. Additive manufacturing models of fetuses built from three-dimensional ultrasound, magnetic resonance imaging and computed tomography scan data. Ultrasound in Obstetrics and Gynecology, 36(3), 355–361. http://doi.org/10.1002/uog.7619
  • Wong, K. C., Kumta, S. M., Geel, N. V., & Demol, J. (2015). One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Computer Aided Surgery : Official Journal of the International Society for Computer Aided Surgery, 20(1), 14–23. http://doi.org/10.3109/10929088.2015.1076039

Comments